Copied to
clipboard

G = C42.160D6order 192 = 26·3

160th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.160D6, C6.992- 1+4, C12⋊Q840C2, C4⋊C4.117D6, C422C21S3, C422S35C2, D6⋊Q839C2, (C4×Dic6)⋊14C2, C22⋊C4.75D6, (C4×C12).32C22, (C2×C6).246C24, C2.63(Q8○D12), Dic6⋊C440C2, (C2×C12).192C23, D6⋊C4.139C22, Dic34D4.4C2, C23.8D643C2, (C22×C6).60C23, C23.62(C22×S3), Dic3.31(C4○D4), Dic3.D444C2, C23.16D620C2, C4⋊Dic3.317C22, C22.267(S3×C23), C23.11D6.4C2, Dic3⋊C4.145C22, (C22×S3).110C23, C37(C22.50C24), (C2×Dic3).263C23, (C4×Dic3).149C22, (C2×Dic6).254C22, C6.D4.62C22, (C22×Dic3).149C22, C4⋊C4⋊S339C2, C2.93(S3×C4○D4), C6.204(C2×C4○D4), (C3×C422C2)⋊1C2, (S3×C2×C4).218C22, (C2×C4).83(C22×S3), (C3×C4⋊C4).201C22, (C2×C3⋊D4).67C22, (C3×C22⋊C4).71C22, SmallGroup(192,1261)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.160D6
C1C3C6C2×C6C2×Dic3C22×Dic3C23.16D6 — C42.160D6
C3C2×C6 — C42.160D6
C1C22C422C2

Generators and relations for C42.160D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, cac-1=ab2, ad=da, cbc-1=dbd-1=a2b-1, dcd-1=c-1 >

Subgroups: 480 in 212 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C4.4D4, C422C2, C422C2, C4⋊Q8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C22×Dic3, C2×C3⋊D4, C22.50C24, C4×Dic6, C422S3, C23.16D6, Dic3.D4, C23.8D6, Dic34D4, C23.11D6, Dic6⋊C4, C12⋊Q8, D6⋊Q8, C4⋊C4⋊S3, C3×C422C2, C42.160D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2- 1+4, S3×C23, C22.50C24, S3×C4○D4, Q8○D12, C42.160D6

Smallest permutation representation of C42.160D6
On 96 points
Generators in S96
(1 69 57 19)(2 48 58 86)(3 71 59 21)(4 44 60 88)(5 67 55 23)(6 46 56 90)(7 63 25 13)(8 42 26 80)(9 65 27 15)(10 38 28 82)(11 61 29 17)(12 40 30 84)(14 52 64 92)(16 54 66 94)(18 50 62 96)(20 74 70 36)(22 76 72 32)(24 78 68 34)(31 87 75 43)(33 89 77 45)(35 85 73 47)(37 93 81 53)(39 95 83 49)(41 91 79 51)
(1 79 73 13)(2 64 74 42)(3 81 75 15)(4 66 76 38)(5 83 77 17)(6 62 78 40)(7 69 51 47)(8 86 52 20)(9 71 53 43)(10 88 54 22)(11 67 49 45)(12 90 50 24)(14 36 80 58)(16 32 82 60)(18 34 84 56)(19 91 85 25)(21 93 87 27)(23 95 89 29)(26 48 92 70)(28 44 94 72)(30 46 96 68)(31 65 59 37)(33 61 55 39)(35 63 57 41)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 18 73 84)(2 17 74 83)(3 16 75 82)(4 15 76 81)(5 14 77 80)(6 13 78 79)(7 68 51 46)(8 67 52 45)(9 72 53 44)(10 71 54 43)(11 70 49 48)(12 69 50 47)(19 96 85 30)(20 95 86 29)(21 94 87 28)(22 93 88 27)(23 92 89 26)(24 91 90 25)(31 38 59 66)(32 37 60 65)(33 42 55 64)(34 41 56 63)(35 40 57 62)(36 39 58 61)

G:=sub<Sym(96)| (1,69,57,19)(2,48,58,86)(3,71,59,21)(4,44,60,88)(5,67,55,23)(6,46,56,90)(7,63,25,13)(8,42,26,80)(9,65,27,15)(10,38,28,82)(11,61,29,17)(12,40,30,84)(14,52,64,92)(16,54,66,94)(18,50,62,96)(20,74,70,36)(22,76,72,32)(24,78,68,34)(31,87,75,43)(33,89,77,45)(35,85,73,47)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,79,73,13)(2,64,74,42)(3,81,75,15)(4,66,76,38)(5,83,77,17)(6,62,78,40)(7,69,51,47)(8,86,52,20)(9,71,53,43)(10,88,54,22)(11,67,49,45)(12,90,50,24)(14,36,80,58)(16,32,82,60)(18,34,84,56)(19,91,85,25)(21,93,87,27)(23,95,89,29)(26,48,92,70)(28,44,94,72)(30,46,96,68)(31,65,59,37)(33,61,55,39)(35,63,57,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,73,84)(2,17,74,83)(3,16,75,82)(4,15,76,81)(5,14,77,80)(6,13,78,79)(7,68,51,46)(8,67,52,45)(9,72,53,44)(10,71,54,43)(11,70,49,48)(12,69,50,47)(19,96,85,30)(20,95,86,29)(21,94,87,28)(22,93,88,27)(23,92,89,26)(24,91,90,25)(31,38,59,66)(32,37,60,65)(33,42,55,64)(34,41,56,63)(35,40,57,62)(36,39,58,61)>;

G:=Group( (1,69,57,19)(2,48,58,86)(3,71,59,21)(4,44,60,88)(5,67,55,23)(6,46,56,90)(7,63,25,13)(8,42,26,80)(9,65,27,15)(10,38,28,82)(11,61,29,17)(12,40,30,84)(14,52,64,92)(16,54,66,94)(18,50,62,96)(20,74,70,36)(22,76,72,32)(24,78,68,34)(31,87,75,43)(33,89,77,45)(35,85,73,47)(37,93,81,53)(39,95,83,49)(41,91,79,51), (1,79,73,13)(2,64,74,42)(3,81,75,15)(4,66,76,38)(5,83,77,17)(6,62,78,40)(7,69,51,47)(8,86,52,20)(9,71,53,43)(10,88,54,22)(11,67,49,45)(12,90,50,24)(14,36,80,58)(16,32,82,60)(18,34,84,56)(19,91,85,25)(21,93,87,27)(23,95,89,29)(26,48,92,70)(28,44,94,72)(30,46,96,68)(31,65,59,37)(33,61,55,39)(35,63,57,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,18,73,84)(2,17,74,83)(3,16,75,82)(4,15,76,81)(5,14,77,80)(6,13,78,79)(7,68,51,46)(8,67,52,45)(9,72,53,44)(10,71,54,43)(11,70,49,48)(12,69,50,47)(19,96,85,30)(20,95,86,29)(21,94,87,28)(22,93,88,27)(23,92,89,26)(24,91,90,25)(31,38,59,66)(32,37,60,65)(33,42,55,64)(34,41,56,63)(35,40,57,62)(36,39,58,61) );

G=PermutationGroup([[(1,69,57,19),(2,48,58,86),(3,71,59,21),(4,44,60,88),(5,67,55,23),(6,46,56,90),(7,63,25,13),(8,42,26,80),(9,65,27,15),(10,38,28,82),(11,61,29,17),(12,40,30,84),(14,52,64,92),(16,54,66,94),(18,50,62,96),(20,74,70,36),(22,76,72,32),(24,78,68,34),(31,87,75,43),(33,89,77,45),(35,85,73,47),(37,93,81,53),(39,95,83,49),(41,91,79,51)], [(1,79,73,13),(2,64,74,42),(3,81,75,15),(4,66,76,38),(5,83,77,17),(6,62,78,40),(7,69,51,47),(8,86,52,20),(9,71,53,43),(10,88,54,22),(11,67,49,45),(12,90,50,24),(14,36,80,58),(16,32,82,60),(18,34,84,56),(19,91,85,25),(21,93,87,27),(23,95,89,29),(26,48,92,70),(28,44,94,72),(30,46,96,68),(31,65,59,37),(33,61,55,39),(35,63,57,41)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,18,73,84),(2,17,74,83),(3,16,75,82),(4,15,76,81),(5,14,77,80),(6,13,78,79),(7,68,51,46),(8,67,52,45),(9,72,53,44),(10,71,54,43),(11,70,49,48),(12,69,50,47),(19,96,85,30),(20,95,86,29),(21,94,87,28),(22,93,88,27),(23,92,89,26),(24,91,90,25),(31,38,59,66),(32,37,60,65),(33,42,55,64),(34,41,56,63),(35,40,57,62),(36,39,58,61)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I···4P4Q4R4S6A6B6C6D12A···12F12G12H12I
order1222223444444444···4444666612···12121212
size11114122222244446···612121222284···4888

39 irreducible representations

dim111111111111122222444
type+++++++++++++++++--
imageC1C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D42- 1+4S3×C4○D4Q8○D12
kernelC42.160D6C4×Dic6C422S3C23.16D6Dic3.D4C23.8D6Dic34D4C23.11D6Dic6⋊C4C12⋊Q8D6⋊Q8C4⋊C4⋊S3C3×C422C2C422C2C42C22⋊C4C4⋊C4Dic3C6C2C2
# reps111111122112111338142

Matrix representation of C42.160D6 in GL6(𝔽13)

800000
080000
001800
0031200
0000120
0000012
,
1200000
110000
008000
000800
0000120
0000012
,
830000
550000
001000
0031200
0000012
0000112
,
5100000
880000
005000
000500
0000121
000001

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,3,0,0,0,0,8,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,5,0,0,0,0,3,5,0,0,0,0,0,0,1,3,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[5,8,0,0,0,0,10,8,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C42.160D6 in GAP, Magma, Sage, TeX

C_4^2._{160}D_6
% in TeX

G:=Group("C4^2.160D6");
// GroupNames label

G:=SmallGroup(192,1261);
// by ID

G=gap.SmallGroup(192,1261);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,758,387,100,794,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,c*a*c^-1=a*b^2,a*d=d*a,c*b*c^-1=d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽